In Search of the Real Fake News

Jaakko Kuurne, Teemu Poyhonen, Dean Rahman

Introduction to Data Science: Final Assignment
first.last@helsinki.fi

2020 Autumn

1 Introduction

We have built a text classification system for predicting whether a news
article is real or fake. We have presented our motivation for choosing to work
on this kind of system and our longer term vision in our promotional pitch
(Kuurne et al., 2020a). We have also written a blog (Kuurne et al., 2020Db)
for our target user who is primarily someone who investigates whether news
is fake. But it could also be anyone who reads the news and wants to be able
to quickly paste in a story and get an indication whether the story is fake.
Without going into details there on the algorithms we used, we have provided
that audience an overview of how we built our system and explained how we
assessed its performance. This enabled us also to present our performance
results there. We believe that truth investigators would want to understand
our work at this level of detail in order to have the confidence to use our
system’s automatically generated fakeness assessments.

The goal of this technical report, on the other hand, is very much to
detail how we have built a Model-A and a Model-B. They are both logistic
regression models where Model-A uses a TF-IDF feature set. For Model-
B, we first considered a word2vec feature set, but then learned about and
quickly moved on to using a Doc2vec feature set instead.

After briefly discussing the justification for using logistic regression, we
present our data pre-processing methods. Then, we discuss the two different
input feature sets for the model. Finally, we discuss some future work.

2 Logistic Regression

The nature and form of the outputs of different models influenced our choice
of model architecture. We chose logistic regression because it produces a
probabilistic output and this is quite interpretable by an end user. We
avoided, for example, random-forest classifiers because of the lack of end-
user interpretable output even though such classifiers might have provided
better performance.

Another reason for using the logistic regression model is the rather ac-
cessible library of scikit-learn. We were able to focus on tuning the hyper-
parameters and processing the data because importing the model and fitting
the vectors to the model could be done without much effort. Our logis-
tic regression model uses the liblinear solver, balanced class weight and the

one-versus-rest scheme (ovr).

3 Data

Our data came with only some minor pre-processing (lower-casing and punc-
tuation removal). We spent considerable effort on more sophisticated data
pre-processing methods. We experimented with stemming and lemmatiza-
tion, and for different reasons neither was used in either model. In the case
of Doc2vec, morphosyntactical information regarding words and sentences is
an important aspect when generating vector representations of documents.
Within our TF-IDF model, lemmatization could been a useful pre-processing
method, but our hardware was the limiting factor.

Before training the Doc2vec representations, we did convert all URLs to
a ‘URL’ token. We tokenized the documents using nltk’s RegexpTokenizer.

4 Input Features

4.1 Doc2vec

Representation learning and word2vec are most likely already familiar to any
practitioner of machine learning and natural language processing methods.
We employed Doc2vec as a method to input vector representations of the
news into the logistic regression model. Doc2vec differs from word2vec in
that Doc2vec adds the paragraph id as a vector to the typical word2vec
model. Hence, we got a word vector for each of the words and a document
vector for each of the documents. We then trained the model by ”predicting
a probability distribution of words in a paragraph given a randomly-sampled
word from the paragraph.”(Susan Li)

4.1.1 Doc2vec Implementation

We divided the news articles into a test set and a train set with the test set
containing 20% of the articles. Then, we trained the Doc2vec model, and
as each of the news articles were tagged with a dummy index, we were able
to retrieve the training and test vectors after the training process. Finally,
we could retrieve the vectors and used them as input features for the logistic
regression model.

We used a Distributed-Bag-of-Words version of the Paragraph Method
(PV-DBOW) which is comparable to the skip-gram method in word2vec.
t

4.1.2 Doc2vec Parameters

In our methodology, we used the Gensim library for Doc2vec. The trained
Doc2vec model used vector-size 300. The size of the dimensions can be seen
as the capacity of the embedding model to capture information. Never-
theless, increasing the dimensionality above 300 was not appropriate in this
project, since the size of the dataset was not large enough to warrant a higher
dimensionality.

We set the window size to 15 to try to capture the semantic similarity of
words and not strictly the syntactic similarity. The model still leaned towards
syntactic information as the window size for a purely semantic approach could
go as high as 50.

We set negative sampling to 5 though we experimented with larger num-
bers, such as 15. Fifteen seemed a more natural choice based on the size of
the dataset and it was relatively fast to train the embeddings even with the
higher negative sampling. However, the results did not show improvement.

Minimum count was another important parameter, since our dataset con-
tains many infrequent and irrelevant words, e.g., the text of navigation but-
tons in some of the articles. We did attempt to clean the articles from this
kind of noise, but the simplest solution under our time constraint was to
drop words such as usernames with minimum count. We experimented with
values below 5, but even with 5 the model did not seem to lose any important
words.

For the final model, we set the epoch count to 50 and it took almost 5
hours to train the embeddings.

Lastly, we set a learning (and minimum) rate to 0.01. We did investigate
a learning rate as high as 0.5, but 0.01 seemed to yield similar if not better
results.

4.2 TF-IDF

Term Frequency - Inverse Document Frequency (TF-IDF) was our other ap-
proach for constructing features. TF-IDF turns textual documents such as
our news articles into numeric representations. Then, a machine learning

model such as logistic regression is able to take the numeric representations
as an input.

Each instance (news article) is a collection of features. In the TF-IDF
scheme, there exists an equal amount of features as there are unique words
in the vocabulary. The value of each feature is the TF-IDF score for that
particular word.

tf-idf(¢, d) = tf(¢, d) * idf(¢), where idf is defined as follows:

idf(t) = log(n/df(t)) + 1

The underlying intuition behind TF-IDF is that it gives more weight to
words that are common in a particular document and less weight to frequent
words that occur in other documents. Consequently, TF-IDF produces a
higher score for words that are frequent in a particular document and do not
occur often in others.

4.2.1 TF-IDF Implementation

We used the TF-IDF implementation of the python package scikit-learn(sci).
We decided to test the results using TF-IDF as a way of constructing our
features because we thought that the importance as defined in the context
of TF-IDF might help the model to differentiate between fake news and real
news. Additionally, TF-IDF is accessible to understand as a concept and
is relatively straight-forward to implement. For these reasons, TF-IDF is a
decent candidate as a baseline when we compare the performance with other
feature extracting techniques.

The disadvantage of TF-IDF is that it creates feature vectors from a large
corpus that are highly dimensional. The feature vector is a V dimensional
vector where V equals the size of the vocabulary. Fortunately, scikit-learn
can handle sparse matrices efficiently.

For the purposes of further examining the data and doing sanity checks,
we also implemented a function that checks what documents contain a target
feature. In other words, the function finds documents in which a particular
feature has a non-zero TF-IDF score.

4.2.2 TF-IDF Parameters

We used a minimum document frequency of two to develop the feature vec-
tors. So we ignored any word that appears only in a single document. We
also set the n-gram range to 1 so only individual words were considered inde-
pendently. We did experiment with an n-gram range of ‘1, 2’ in which both
single words and all pairs of adjacent words were considered, but this did not
seem to improve the performance of our model. Furthermore, it increased
the number of features greatly, so we kept an n-gram range of 1.

5 Future Work

In order to improve the performance of the logistic regression model itself,
we would research different methods for pre-processing data. In the original
dataset, some articles were actually a series of blog posts, with comments and
discussion and even text of user interface elements. We already implemented
a script that can fetch a large number of html documents relatively quickly
via asynchronous processing of requests. By creating a heuristic or employing
an existing one to pick the relevant text body from article pages, we might
be able provide a cleaner dataset to build our features.

As another example, lemmatized tokens could be an important improve-
ment in terms of pre-processing and building the logistic regression model
with TF-IDF features. This would allow different variants of the same word
(e.g. politics, political, politicize) to contribute to combined TF-IDF scores
to more strongly distinguish an article (e.g. about politics) from other articles
in the dataset (not or less about politics). Similarly, this could strengthen
the distinction of words or topics more commonly in fake news.

In terms of seeking improvement in the word and document embeddings
as features, we would be exploring openly available word embeddings that
have been pre-trained using massive amounts of data (e.g. Wikipedia). We
would continue to consider training our own embeddings as well, using the
data we have collected. This is in case using our own embeddings is more
conducive to growing our training set as we collect data from more and more
truth organizations.

Lastly, we want to explore deep learning, especially to replace the logistic
regression classifier with, for example, a zero-shot Transformer model.

References

TfidfTransformer. ~ URL https://scikit-learn.org/stable/modules/
generated/sklearn.feature_extraction.text.TfidfTransformer.html.

J. Kuurne, T. Poyhonen, and D. Rahman. In search of the real
fake news pitch, 2020a. URL https://jjaakko.github.io/fake-news-
classifier/assets/In Search of _the Real Fake News.pdf.

J. Kuurne, T. Péyhonen, and D. Rahman. In search of the real fake news blog,
2020b. URL https://jjaakko.github.io/fake-news-classifier/.

Susan Li. Multi-class text classification with doc2vec logistic re-
gression. URL https://towardsdatascience.com/multi-class-text-
classification-with-doc2vec-logistic-regression-9da9947b43f4.

